Позиционирование солнечных модулей


Солнечные лучи, которые достигают поверхности Земли, подразделяют на два вида: прямые и рассеянные. Прямые солнечные лучи — это лучи, которые непосредственно с поверхности Солнца достигают поверхности Земли. Мощность прямого солнечного излучения зависит от чистоты атмосферы, высоты Солнца над линией горизонта (зависит от географической широты и времени дня), а также от положения поверхности по отношению к Солнцу. Рассеянные солнечные лучи поступают из верхних слоев атмосферы и зависят от того, каким образом прямые солнечные лучи отражаются от Земли и окружающей среды. Благодаря повторяющемуся процессу отражения между покрытой снегом поверхностью Земли и нижней стороной облаков мощность рассеянного солнечного излучения может достигать больших значений. Солнечные лучи несут с собой неиссякаемый поток солнечной энергии. Они постоянно доставляют на Землю большее количество энергии, чем нам сегодня необходимо Плотность солнечных лучей в космосе равняется примерно 1,4 кВт/м2. Из них около 30% отражается назад в космос, так и не достигнув Земли. На поверхности Земли плотность солнечных лучей составляет 1 кВт/м2.Солнечные лучи, которые достигают поверхности Земли, подразделяют на два вида: прямые и рассеянные. Прямые солнечные лучи — это лучи, которые непосредственно с поверхности Солнца достигают поверхности Земли. Мощность прямого солнечного излучения зависит от чистоты атмосферы, высоты Солнца над линией горизонта (зависит от географической широты и времени дня), а также от положения поверхности по отношению к Солнцу. Рассеянные солнечные лучи поступают из верхних слоев атмосферы и зависят от того, каким образом прямые солнечные лучи отражаются от Земли и окружающей среды. Благодаря повторяющемуся процессу отражения между покрытой снегом поверхностью Земли и нижней стороной облаков мощность рассеянного солнечного излучения может достигать больших значений. Солнечные лучи несут с собой неиссякаемый поток солнечной энергии. Они постоянно доставляют на Землю большее количество энергии, чем нам сегодня необходимо Плотность солнечных лучей в космосе равняется примерно 1,4 кВт/м2. Из них около 30% отражается назад в космос, так и не достигнув Земли. На поверхности Земли плотность солнечных лучей составляет 1 кВт/м2.

poz_soln_mod.jpg



1.  Прямое солнечное излучение
2.Поглощенное в атмосфере земли солнечное излучение
3.Отраженное солнечное излучение
4.Рассеянное солнечное излучение

Солнечные батареи генерируют электричество даже в пасмурную погоду при отсутствии прямого солнечного излучения. Поэтому, даже при облачной погоде АСЭ будет производить электричество, но наилучшие условия для генерации электроэнергии будут при ярком солнечной погоде и позиционировании модулей перпендикулярно солнечному свету.
Солнечные батареи должны быть ориентированы под определенным углом к горизонтальной поверхности. Это зависит от географического положения объекта. Небольшие отклонения от оптимальных значений не оказывают большого влияния на эффективность генерации, потому что в течение дня линия движения солнца проходит с востока на запад. При этом угол падения солнечных лучей будет постоянно меняться.

poz_soln_mod2.jpg

Линия движения солнца проходит с востока на запад. Наиболее эффективная работа солнечных модулей происходит при полном освещении модуля и перпендикулярном падении солнечных лучей на модуль. Солнечные батареи, как правило, устанавливаются на крыше при помощи монтажной конструкции в фиксированном положении, и не могут следовать за солнцем в течение дня. По этой причине солнечные батареи не могут работать с полной отдачей в течение всего дня.

poz_soln_mod3.jpg

Так как на протяжении года Земля движется вокруг Солнца, также происходят сезонные изменения угла падения солнечных лучей на поверхность земли.

poz_soln_mod4.jpg


1.  Угол падения солнечных лучей зимой
2.Угол падения солнечных лучей летом

Зимой солнце достигает более низкого угла, чем летом, поэтому солнечные модули зимой должны быть расположены под большим углом, чем летом. Это обеспечивает их более эффективную работу и позволяет солнечным модулям поглощать отраженный солнечный свет от снега. Расположив солнечные модули под большим углом, Вы также частично решаете проблему со скопившимся снегом на панелях. Во многих случаях он просто не будет задерживаться на солнечном модуле.

Обратная ситуация с углом наклона происходит в летний период. Чем меньше угол, тем лучше, естественно оптимальные углы зависят от Вашего географического местоположения. В идеале, крепить солнечные батареи лучше на конструкцию с изменяемым углом наклона или на трекер. Если нет возможности менять угол наклона дважды в год (лето/зима), то модули лучше закрепить под оптимальным углом, значение которого составляет среднее значение между оптимальным летним и зимним углом. Для каждой широты есть свой оптимальный угол наклона солнечных модулей.

Обычно принимается для весны и осени оптимальный угол наклона равным значению широты местности. Для зимы к этому значению прибавляется 10-15 градусов, а летом от этого значения отнимается 10-15 градусов. Поэтому обычно мы рекомендуем изменять угол наклона дважды в год лето/зима.

Небольшие отклонения до 5 градусов от оптимальных значений не существенно сказываются на эффективности генерации.

Предлагаем Вам рассмотреть 3 варианта монтажных конструкций солнечных модулей и наглядно показать эффективность применения таких решений. Смоделируем работу автономной энергосистемы в профессиональном ПО в условиях г. Москвы. Установленная мощность системы 1 кВт (6 Солнечных модулей мощностью 170 Ватт), ориентация на Юг.

Вариант 1. Фиксированный угол наклона.

Наиболее распространенный способ крепления солнечных панелей на крыше дома под углом 45 градусов.

poz_soln_mod5.jpg

Вариант 2. Сезонное изменение угла наклона лето/зима.

В том случае, если у Вас установлена система с изменяемым углом наклона лето/зима, Вы получаете прибавку сгенерированной электроэнергии около 10-12%, что является достаточно высоким показателем. Это особенно актуально в зимний период, когда использование АСЭ малоэффективно в условиях средней полосы.

poz_soln_mod6.jpg

Вариант 3. Использование треккера с отслеживанием оптимального угла по двум осям.

Данный способ является наиболее эффективным и дорогостоящим. В случае использования треккера, Вы можете получить около 50% дополнительной электроэнергии в течение года. Установка треккера практически невозможна на крыше дома. Треккеры бывают 2х типов. С отслеживанием угла по оси X и системы отслеживания по обеим осям X и Y. Треккеры представляют собой отдельно стоящие конструкции, которые, как правило, устанавливаются на земле. Принцип работы основан на фото датчике, который определяет оптимальный угол падения солнечных лучей.

poz_soln_mod7.jpg

Очевидно, что углы наклона и позиционирование солнечных модулей играют огромную роль в эффективности генерации. Поэтому мы настоятельно рекомендуем использовать конструкции с изменяемым углом наклона лето/зима.

AlfaSystems stroymart AL91TG62